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Abstract.  Single and multiple intra-beam scattering are usually considered separately. Such separation works well for 
electron-positron colliders but usually yields only coarse description in the case of hadron colliders. Boltzmann type 
integro-differential equation is used to describe evolution of longitudinal distribution due to IBS. The finite size of the 
longitudinal potential well, its non-linearity and x-y coupling are taken into account. The model predictions for 
longitudinal and transverse distributions are compared to the experimental measurements. 

 

INTRODUCTION 

The intrabeam scattering (IBS) is closely related to 
the particle scattering in plasma and is well understood 
conceptually[1]. In the most general case IBS is 
described by Boltzmann type integro-differential 
equation but its exact solution is not easy even in 
simple cases.  In this paper IBS is considered in 
application to high energy hadron colliders. Because 
of large γ, the longitudinal velocity spread is much 
smaller than the transverse in the beam frame resulting 
in a simplified description.  First, we consider the 
emittance growth rates for Gaussian beams in the case 
of x-y coupled motion. This approximation works well 
for transverse degrees of freedom; but due to 
longitudinal focusing nonlinearity and finite size of RF 
bucket it yields a coarse description of longitudinal 
distribution. To correct this problem we build the 
Fokker-Planck equation[2] describing the longitudinal 
distribution. Then we generalize equations to include 
the single-scattering which dominates particle loss at 
the beginning of the process and is slowly diminishing 
with bunch lengthening. Finally, we compare the 
theory predictions with the observed beam parameter 
evolution during Tevatron stores.   

IBS RATES FOR COUPLED BEAM 

The evolution of distribution function for particle 
scattering in the plasma is determined by Landau 

collision integral[1]: 
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Here the friction and diffusion are 
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n is the particle density, e and m are the particle charge 
and mass, and Lc is the Coulomb logarithm. 
Multiplying Eq. (1) by px

2, and integrating it with 
Gaussian distribution, 
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one obtains 
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The growth rates for two other degrees of freedom are 
obtained from Eq. (4) by cyclic substitution. For the 
case of pancake distribution it can be approximated as 
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This function possesses correct asymptotics and 
coincides with exact result within ~1%. 

 To describe IBS in a ring Eq. (4) needs to be 
averaged across the bunch. Below we limit ourselves 
to the case of pancake distribution, (Δp|| /p)/γ << θ⊥ and 
the energy well above the critical energy, γ >>γcr, 
which is typical for the high-energy colliders. Then, 
there is no significant difference between scattering in 
plasma and IBS for longitudinal degree of freedom. 
Averaging Eq. (4) over the Gaussian distribution in the 
3D space and taking into account that the energy is 
equally distributed between potential and kinetic, 
yields the momentum spread growth rate[3]:  

( )
( )

3332

2
2

2
1

21

21

4

2

24

,,0

βγ

θθ

θθ
σσσ

σ
cm

LNe

dt
d s

C
s

p

+

Ψ

= .            (7) 

Here ( )2/ ppp Δ≡σ is the rms momentum spread, 

σ1, σ2, θ1 and θ2 are the rms ellipse semi-axis in the x-y 
plane and in the plane of local angular spreads (θx –
 θy), N is the number of particles in the bunch, and 
index s denotes averaging over the ring circumference. 
To find the ellipse sizes we describe the x-y coupled 
betatron motion using an extension of the Mais-Ripken 
representation[4]: 
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where x(s) = [x, θx, y, θy]T is the coordinate vector, v1 
and v2 are the eigen-vectors, 
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β’s and α’s represent the extension of the beta- and 
alpha-functions for uncoupled motion, and the 
parameters u, ν1,2 are determined by symplecticity 
condition from β’s and α’s. The bilinear form 
inscribing particle ellipsoid in 4D phase space, 

1ˆˆ =ΞxxT ,          (10) 

can be expressed through  the eigen-vectors and the 
emittances. Corresponding formulas can be found in 
Ref. [4]. To obtain the beam sizes and angular spreads 

we also need to take into account the dispersion 
contribution into the beam sizes and angular spreads.  
In this case the distribution function is: 
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where D = [Dx, D′x, Dy, D′y]T is the vector  of 
dispersions. Integrating over momentum spread we 
obtain 4D Gaussian distribution   
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That yields the beam sizes and local angular spreads: 
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For γ >>γcr, the main source of the transverse 
emittance growth is related to the excitation of 
betatron oscillations at regions with non-zero 
dispersion. In this case the momentum change and the 
amplitudes of particle motion are related as, 
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where V = [v′1, -v′′1, v′2, -v′′2], a = [a′1, a′′1, a′2, a′2]. 
Expressing emittances through coordinates of vector a, 

DVa 1−Δ
=

p
p  ,                                               (16) 

and averaging yield the emittance growths rates for 
two transverse betatron modes: 
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For uncoupled case Eqs. (7) and (17) coincide with 
results presented in Ref. [3]. 



IBS IN NONLINEAR WELL 

In the case of non-linear oscillator one needs to 
make a transformation to the angle-phase variables and 
to perform averaging over phase. For v||<<v⊥ one can 
neglect friction in Eq. (1) that results in: 
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Here ω and I are the frequency and action for the 
dimensionless Hamiltonian,  
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The diffusion coefficient is determined as: 
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where C is the ring circumference, α is the momentum 
compaction, q is the harmonic number, and V0 is the 
RF voltage, n(ϕ) is the linear density 1)( =∫−

π

π
ϕϕ dn .  

To take into account single scattering we follow the 
method developed in Ref. [5]. For high energy collider 
the maximum longitudinal velocity determined by the 
RF bucket size is much smaller than the transverse 
ones, θ||max/γ << θ⊥, and one can write:  
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which after averaging yields: 
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The kernel is a symmetrical function, W(I, I′) =W(I′, I), 
which for I′ ≥ I can be expressed as following 
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The kernel divergence at I = I′ needs to be limited at 
the minimum action difference corresponding to the 
maximum impact parameter usually determined by the 
beam size. Numerical solution of Eq. (24) is carried 
out similar to Ref. [5]. 

DISCUSSION 

To achieve good agreement between the theory and 
the experiments it was critical to include other beam-
loss and diffusion mechanisms: the elastic and non-
elastic scattering on the residual gas, particle loss due 
luminosity, and the longitudinal diffusion due to RF 
noise. Figure 1 presents the measured and computed 
dependencies of proton and antiproton bunch lengths 
during one of Tevatron stores. Similar good 
coincidence has been obtained for the horizontal and 
vertical beam emittances.  Measured Tevatron optics 
with x-y coupling taken into account has been used in 
the calculations.  The saturation of antiproton bunch 
lengthening in the second half of the store is related to 
the beam-beam effects, which make transverse motion 
unstable for particles with large synchrotron 
amplitudes. At t = 28 hour a corrector power supply 
was lost. That worsened beam-beam effects with 
consecutive growth of particle loss and nullifying 
bunch lengthening.  
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FIGURE 1. Measured (dotted line) and computed (solid line) 
dependence of rms bunch length on time for Store 3678.  
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